Urban Water Solving Chicago's Water Problem

Group 5 Presentation
UIC Sustainability Institute
Summer 2011
Chicago, IL

Contents

- Team members
- Chicago water problem
- Underlying assumptions
- Attempted solutions
- Working towards a resolution
- Our proposal
- Barriers associated with proposal
- Next steps
- Summary
- Closing remarks

Team Members

- Bryan Tillman MBA & MS Environmental Management and Sustainability - IIT
- Jessica O' Connell Communication UIC
- Lisa Nielsen Environmental Engineering IIT
- Rick Lightburn Energy Engineering UIC
- Kevin Gurtkowski Masters of Urban Planning UIC
- Ting Yuan PhD in Physics UIC
- Jeff Wasil Sustainability Roosevelt University

Chicago's Water Problem

- Much of the storm-water in the Chicago area flows into the sanitary sewers and treated as waste.
 - Combined sewers
 - Flooding
 - Sewer water leaves Great Lakes basin
- Growth of the population of the Chicago area is limited because of limits from Lake Michigan.

Chicago's Water Problem

STORMWATER MANAGEMENT WATERSHEDS

- In combined sewer area, storm run-off goes directly and suddenly into sanitary sewer, causing it to back-up
- Sewer water enters
 CSSC leaves basin

Underlying Assumptions

- In 2007 ACE estimates that:
 - 326 billion gallons were taken from Lake Michigan for tap water
 - 282 billion gallons of storm runoff
 - 85 billion gallons was taken into the waterways through locks on Lake Michigan
- 1 cfs = 236 o62 200 gallons

Attempted Solutions

- Green roofs, bio-swales, and other best management practices
- Over 140 alleys have been replaced with porous material
- Rain blocker program (passive)
- Deep Tunnel Project (TARP)

Notes from Mentors

- How will this create jobs?
- Who will pay for this?
- Quantify the problem and potential solutions
- Think about maintenance issues
- Focus on fewer solutions and dig deeper
- Are there any safety issues?
- Potential nuances?
- What will it be like in winter?

- Two part approach
 - Slow down and better uniformly control stormwater that needs to be treated
 - Divert Storm-water that does not need treatment
 - Put back into the lake or use as an asset
 - Harmony between technology and green infrastructure

Sewer system control: A delicate balance

Transition Point

Maximum Performance \$\$\$

Free-Surface Flow Fully-Pressurized Flow

Rain-blocker Program (Passive System)

- One size fits all solution
- No adjustment for individual drainage needs
- No mandates enforced for disconnecting gutters from storm drains
 - Many homes were inundated with water over the curb and into the basement windows.
 - Other homes that consistently experienced basement flooding from surging (through sewer pipes) were okay after vortex-flow restrictors installed.
 - Several law suits issued against the City of Chicago

ISS System Overview:

Benefits of Active System

- Intelligent Sewer System (ISS)
 - Real time control of transient sewer flows (reduce fully pressurized flow surcharging)
 - Improve hydraulic performance
 - Together with CFD performance modeling, real-time Doppler, rain and curbing sensors, topography and green infrastructure, optimize control strategies to minimize CSO events
 - Active control of 20% / 80%

CSO Total per year

CSO Total [Million Gallons] vs. Precipitation Total [inches]

2010 Event percentage

Total CSO 2010 14.2 Billion Gallons

2010 Precipitation by Location (single storm event 24 hours)

2010 Precipitation vs. Location Single Storm Event - 24 hours (average of 0.75 inch or more)

- Storm-water with no need to be treated
- We will put in bio-swales & retention barrels in 10% of the impermeable areas in Chicago
 - This will help keep storm-water runoff out of the combined sewage system
 - Chemical free water for plants

- Site selection policy
- Every neighborhood is different and a panel should take the lead on the best locations
 - Focus on alternative transportation routes
 - Colleges and universities
 - Chicago parks
 - Brown-fields
 - Site remediation
 - Streets with minimal traffic
 - Parking meters internalize parking costs
 - Entire or partial street options

GIS Selection Criteria:

- 1. Space maintained by City
- 2. Existing Open Space
- 3. Adjacent to Chicago Park

Potential Sites for Initial Projects: Chicago Public Schools & Chicago Park District Joint Project

Selecetion Criteria:

- 1. Space maintained by City
- 2. Existing Open Space
- 3. Adjacent to Chicago Park

Example Project Street:

Barry Ave west of Clark Street in the Lakeview neighborhood

Potential to increase storm water management capacity

Creates common open space in a densely populated neighborhood

- Less parking parking meters
 - Fewer cars on the road less dependence on fossil fuels
 - Each car taken off the road keeps more money in the local economy
 - Automobile ownership costs \$7,319 annually
 - CTA & I-GO members spend \$2,520 annually
 - This keeps \$4,800 in the local economy (plus a greater portion of the money spent at I-GO & CTA)
 - More alternative transportation technology and entrepreneurship
 - Biking
 - Car sharing
 - Public transportation (off peak hours)
 - Bike sharing
 - Bike lockers

- Our savings
 - Up to 28.2 billion gallons can be diverted from combined sewers (if 10% storm-water is diverted)
 - This could save the water treatment facility \$12.4 million/year
 - \$2 million/year saved on energy costs
 - \$10.4 million/year saved fall under chemical use, solid disposal waste, and maintenance cost
 - Up to 21.6 billion gallons will make its way back to Lake Michigan (about 80% of water collected by bio-swales)

- Reduce polluted storm-water from entering river
- Improved pedestrian and bicycle safety and opportunities for individuals to exercise
- Reduce basement flooding & sewer backups
- Recharge water inflows into the lake
- Reduce lake water consumption
- Increase urban green space
- Improve air quality & reduce urban heat island effect
- Water collection for urban farms
- Decreased congestion

- Community engagement
 - Work with local area schools to decorate the eco-paths
 - Parks unite communities
 - Community centric themes and parks

Barriers associated with our proposal

- Development and deployment of ISS
- Green Belt
 - Community acceptance
 - Resistance to fewer parking spaces
 - Coordination with alterative transportation providers
 - Politics
- Cost

Next steps

- Build and deploy Intelligent Sewer System prototype
- Green Belt
 - Select pilot location
 - Design pilot Green Belt
 - Get community input
 - Bid out pilot project
 - Coordinate with Partners

Summary

- Reduce combined sewer overflows by approximately 28% utilizing the solutions presented
- Approximately \$12.4 million saved per year in water treatment
- Improved transportation diversity
- Improved community quality of life
- Provide additional water for future growth
- First step toward more sustained water management

Closing Remarks

Closing Remarks

Questions

