The magnetic dipole-dipole interaction equation (see below) contains the constant factor:
$\frac{\mu_{0}}{4 \pi} \beta_{\mathrm{e}}{ }^{2}\left(=\frac{\mu_{0}}{4 \pi} \mu_{\mathrm{B}}{ }^{2}\right)$

The Bohr magneton (magnetic moment of an electron) uses either of the symbols β_{e} or μ_{B}, with the former seeming to be more popular in EPR and the latter in standard physics.
https://en.wikipedia.org/wiki/Bohr magneton
(There is a similar situation with the nuclear magneton symbolized as either $\beta_{N}\left(\beta_{\mathrm{n}}\right)$ or μ_{N} https://en.wikipedia.org/wiki/Nuclear magneton).
$\beta_{\mathrm{e}}\left(=\mu_{\mathrm{B}}\right)=\frac{e \hbar}{2 m_{\mathrm{e}}}=\frac{e h}{[4 \pi] m_{\mathrm{e}}}$
units: $\mathrm{C} \mathrm{J} \mathrm{s} \mathrm{kg}{ }^{-1}$ (charge on electron in C ; h in Js ; mass of electron in kg)
https://en.wikipedia.org/wiki/Vacuum permeability
$\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$
$\frac{\mu_{0}}{4 \pi}=1 \times 10^{-7} \mathrm{Hm}^{-1}$
(Note that this is for magnetic properties; for electric properties there is the vacuum permittivity https://en.wikipedia.org/wiki/Vacuum permittivity).
vacuum permeability in henry per meter:
https://en.wikipedia.org/wiki/Henry (unit)
$\mathrm{H}=\mathrm{J} \mathrm{A}^{-2}=\mathrm{J} \mathrm{s}^{2} \mathrm{C}^{-2} \quad\left(\mathrm{~A}=\mathrm{C} \mathrm{s}^{-1}\right)$
units: $\mathrm{H} \mathrm{m}^{-1}=\mathrm{J} \mathrm{s}^{2} \mathrm{C}^{-2} \mathrm{~m}^{-1}$

So now one can determine the units for the entire constant factor:
$\frac{\mu_{0}}{4 \pi} \beta_{\mathrm{e}}{ }^{2}$
units: $\left(\mathrm{J} \mathrm{s}^{2} \mathrm{C}^{-2} \mathrm{~m}^{-1}\right)\left(\mathrm{J} \mathrm{s} \mathrm{C} \mathrm{kg}^{-1}\right)^{2}=\mathrm{J}^{3} \mathrm{~s}^{4} \mathrm{~kg}^{-2} \mathrm{~m}^{-1}$

Alternatively, using $\beta_{\mathrm{e}}\left(\mu_{\mathrm{B}}\right)$ as commonly defined in $\mathrm{J} \mathrm{T}^{-1}$:
https://en.wikipedia.org/wiki/Tesla (unit)
$\left(\mathrm{J} \mathrm{s}^{2} \mathrm{C}^{-2} \mathrm{~m}^{-1}\right)\left(\mathrm{J} \mathrm{T}^{-1}\right)^{2}=\mathrm{J}^{3} \mathrm{~s}^{2} \mathrm{C}^{-2} \mathrm{~T}^{-2} \mathrm{~m}^{-1}=\mathrm{J}^{3} \mathrm{~s}^{2} \mathrm{C}^{-2}\left(\mathrm{~kg} \mathrm{C}^{-1} \mathrm{~s}^{-1}\right)^{-2} \mathrm{~m}^{-1}=\mathrm{J}^{3} \mathrm{~s}^{4} \mathrm{~kg}^{-2} \mathrm{~m}^{-1}$
$\mathrm{J}^{3} \mathrm{~s}^{4} \mathrm{~kg}^{-2} \mathrm{~m}^{-1}=\mathrm{J}\left(\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}\right)^{2} \mathrm{~s}^{4} \mathrm{~kg}^{-2} \mathrm{~m}^{-1}=\mathrm{J} \mathrm{m}^{3}$

Numerical value for $\frac{\mu_{0}}{4 \pi} \beta_{\mathrm{e}}{ }^{2}$:
$\left(1 \times 10^{-7}\right) \times\left(9.274009994 \times 10^{-24}\right)^{2}=8.600726 \times 10^{-54} \mathrm{~J} \mathrm{~m}^{3}$

So this gives in the desired energy \times volume (distance cubed) SI units, but not in convenient molecular/spectroscopic units.

Convert to molecular/spectroscopic units $-\mathrm{cm}^{-1} \operatorname{per}(\AA)^{3}$ by dividing by $h c$:

```
8.600726 }\times1\mp@subsup{0}{}{-54}\mp@subsup{\textrm{J m}}{}{3}\times(1\mp@subsup{0}{}{10}\AA//\textrm{m}\mp@subsup{)}{}{3}\times(6.626070\times1\mp@subsup{0}{}{-34}\textrm{J s}\mp@subsup{)}{}{-1}\times(2.99792\times1\mp@subsup{0}{}{10}\mp@subsup{\textrm{cm s}}{}{-1}\mp@subsup{)}{}{-1
= 0.43297 cm
```

Equations for magnetic dipole-dipole interaction:

$$
\begin{aligned}
& D_{x x_{\text {dip }}}=g_{x}{ }^{2} \frac{\mu_{0}}{4 \pi} \beta_{\mathrm{e}}{ }^{2}\left(\frac{1}{r^{3}}\right), D_{y y_{\text {dip }}}=g_{y}{ }^{2} \frac{\mu_{0}}{4 \pi} \beta_{\mathrm{e}}{ }^{2}\left(\frac{1}{r^{3}}\right), D_{z z_{\text {dip }}}=g_{z}^{2} \frac{\mu_{0}}{4 \pi} \beta_{\mathrm{e}}{ }^{2}\left(\frac{-2}{r^{3}}\right) \\
& D_{x x, y y, z z \text { dip }}=0.433\left[g_{x, y, z}{ }^{2}\right]\left(\frac{1}{r^{3}}\right)[1,1,-2]
\end{aligned}
$$

so for e.g., $r=4.0 \AA$, $(g=2.0)$ the dipolar coupling is:
$0.433 \times 4.0 \times(1 / 64)=[+0.027,+0.027,-0.054] \mathrm{cm}^{-1},[+T,+T,-2 T]$, where

$$
D_{\text {dip }}=\frac{1}{2}\left(2 D_{z z_{\text {dip }}}-\left[D_{x x_{\text {dip }}}+D_{y y_{\text {dip }}}\right]\right), E_{\text {dip }}=\frac{1}{2}\left[D_{x x_{\text {dip }}}-D_{y y_{\text {dip }}}\right]
$$

$$
D_{\text {dip }}=-3 T=-0.081 \mathrm{~cm}^{-1} ; E_{\text {dip }}=0(r=4.0 \AA, g=2.0) .
$$

