The magnetic dipole-dipole interaction equation (see below) contains the constant factor:

$$\frac{\mu_0}{4\pi}\beta_{\rm e}^2\left(=\frac{\mu_0}{4\pi}\mu_{\rm B}^2\right)$$

The Bohr magneton (magnetic moment of an electron) uses either of the symbols β_e or μ_B , with the former seeming to be more popular in EPR and the latter in standard physics. <u>https://en.wikipedia.org/wiki/Bohr_magneton</u>

(There is a similar situation with the nuclear magneton symbolized as either β_N (β_n) or μ_N <u>https://en.wikipedia.org/wiki/Nuclear magneton</u>).

$$\beta_{\rm e} \left(=\mu_{\rm B}\right) = \frac{e\hbar}{2m_{\rm e}} = \frac{e\hbar}{\left[4\pi\right]m_{\rm e}}$$

units: C J s kg⁻¹ (charge on electron in C; *h* in J s; mass of electron in kg)

https://en.wikipedia.org/wiki/Vacuum_permeability

$$\mu_0 = 4\pi \times 10^{-7} \,\mathrm{Hm}^{-1}$$
$$\frac{\mu_0}{4\pi} = 1 \times 10^{-7} \,\mathrm{Hm}^{-1}$$

(Note that this is for magnetic properties; for electric properties there is the vacuum permittivity <u>https://en.wikipedia.org/wiki/Vacuum_permittivity</u>).

vacuum permeability in henry per meter: <u>https://en.wikipedia.org/wiki/Henry_(unit)</u> H = J A⁻² = J s² C⁻² (A = C s⁻¹) units: H m⁻¹ = J s² C⁻² m⁻¹

So now one can determine the units for the entire constant factor:

$$\frac{\mu_0}{4\pi} \beta_e^2$$

units: (J s² C⁻² m⁻¹) (J s C kg⁻¹)² = J³ s⁴ kg⁻² m⁻¹

Alternatively, using β_e (μ_B) as commonly defined in J T⁻¹: <u>https://en.wikipedia.org/wiki/Tesla (unit)</u> (J s² C⁻² m⁻¹) (J T⁻¹)² = J³ s² C⁻² T⁻² m⁻¹ = J³ s² C⁻² (kg C⁻¹ s⁻¹)⁻² m⁻¹ = J³ s⁴ kg⁻² m⁻¹

$$J^{3} s^{4} kg^{-2} m^{-1} = J (kg m^{2} s^{-2})^{2} s^{4} kg^{-2} m^{-1} = J m^{3}$$

Numerical value for $\frac{\mu_0}{4\pi} \beta_e^2$: (1 × 10⁻⁷) × (9.274009994 × 10⁻²⁴)² = 8.600726 × 10⁻⁵⁴ J m³

So this gives in the desired energy \times volume (distance cubed) SI units, but not in convenient molecular/spectroscopic units.

Convert to molecular/spectroscopic units – cm^{-1} per (Å)³ by dividing by *hc*:

 8.600726×10^{-54} J m³ \times (10¹⁰ Å/m)³ \times (6.626070 $\times 10^{-34}$ J s) $^{-1} \times$ (2.99792 \times 10¹⁰ cm s $^{-1}$) $^{-1}$ = 0.43297 cm $^{-1}$ ų

Equations for magnetic dipole-dipole interaction:

$$D_{xx_{dip}} = g_x^2 \frac{\mu_0}{4\pi} \beta_e^2 \left(\frac{1}{r^3}\right), D_{yy_{dip}} = g_y^2 \frac{\mu_0}{4\pi} \beta_e^2 \left(\frac{1}{r^3}\right), D_{zz_{dip}} = g_z^2 \frac{\mu_0}{4\pi} \beta_e^2 \left(\frac{-2}{r^3}\right)$$
$$D_{xx,yy,zz_{dip}} = 0.433 \left[g_{x,y,z}^2\right] \left(\frac{1}{r^3}\right) \left[1,1,-2\right]$$

so for e.g., r = 4.0 Å, (g = 2.0) the dipolar coupling is:

 $0.433 \times 4.0 \times (1/64) = [+0.027, +0.027, -0.054] \text{ cm}^{-1}, [+T, +T, -2T], \text{ where}$

$$D_{\rm dip} = \frac{1}{2} \Big(2D_{zz_{\rm dip}} - \Big[D_{xx_{\rm dip}} + D_{yy_{\rm dip}} \Big] \Big), E_{\rm dip} = \frac{1}{2} \Big[D_{xx_{\rm dip}} - D_{yy_{\rm dip}} \Big]$$

 $D_{\text{dip}} = -3T = -0.081 \text{ cm}^{-1}$; $E_{\text{dip}} = 0$ (r = 4.0 Å, g = 2.0).