Spin Hamiltonian Matrices

Spin Hamiltonian Matrices

Axial Systems

$$
S=1 / 2
$$

$S=1 / 2$	$+1 / 2$	$-1 / 2$
$+1 / 2$	$g_{z} \beta H_{z} / 2$	$g_{x} \beta H_{x} / 2$
$-1 / 2$	$g_{x} \beta H_{x} / 2$	$-g_{z} \beta H_{z} / 2$

eigenvalues:
for $H_{x}=0: \pm g_{z} \beta H_{z}$;
for $H_{z}=0: \pm g_{x} \beta H_{x}$.
$S=1$
diagonal: $D \boldsymbol{S}_{z}{ }^{2}+g_{z} \beta H \xlongequal{ } \boldsymbol{S}_{z}=D M s^{2}+g_{z} \beta H_{z} M_{S}$
off-diagonal: $g_{x} \beta H \cong \boldsymbol{S}_{x}=g_{x} \beta H_{x}(1 / 2)\left(\boldsymbol{S}_{+}+\boldsymbol{S}_{-}\right) ; \boldsymbol{S}_{ \pm}=\left\{S(S+1)-M_{S}\left(M_{S} \pm 1\right)\right\}^{1 / 2}=2^{1 / 2}$ for $S=1$.

$S=1$	+1	0	-1
+1	$D+g_{z} \beta H_{z}$	$g_{x} \beta H_{x} / 2^{1 / 2}$	0
0	$g_{x} \beta H_{x} / 2^{1 / 2}$	0	$g_{x} \beta H_{x} / 2^{1 / 2}$
-1	0	$g_{x} \beta H_{x} / 2^{1 / 2}$	$D-g_{z} \beta H_{z}$

Eigenvalues ($E_{1,2,3}$, ascending value):
For $H_{x, z}=0: 0, D(2)$.
For $H_{x}=0: 0, D \pm g_{z} \beta H_{z}$; assuming $D>0$ and $D>g_{z} \beta H_{z}$,
$E_{1 z}=0$,
$E_{2 z}=D-g_{z} \beta H_{z}$,
$E_{3 z}=D+g_{z} \beta H_{z}$.
Thus,
$g_{z}=\left(E_{3 z}-E_{2 z}\right) /\left(2 \beta H_{z}\right)$ and $D=\left(E_{3 z}+E_{2 z}\right) / 2$

For $H_{z}=0: D,\left[D \pm\left\{D^{2}+\left(2 g_{x} \beta H_{x}\right)^{2}\right\}^{1 / 2}\right] / 2$; assuming $D>0$ and $D>g_{x} \beta H_{x}$, $E_{1 x}=\left[D-\left\{D^{2}+\left(2 g_{x} \beta H_{x}\right)^{2}\right\}^{1 / 2}\right] / 2$,
$E_{2 x}=D$,
$E_{3 x}=\left[D+\left\{D^{2}+\left(2 g_{x} \beta H_{x}\right)^{2}\right\}^{1 / 2}\right] / 2$.
Thus,
$g_{x}=\left[\left(E_{3 x}-E_{I x}\right)^{2}-D^{2}\right]^{1 / 2} /\left(2 \beta H_{x}\right)$.
$S=3 / 2$

$S=3 / 2$	$+3 / 2$	$+1 / 2$	$-1 / 2$	$-3 / 2$
$+3 / 2$	$(9 / 4) D+$ $g_{z} \beta H_{z}(3 / 2)$	$g_{x} \beta H_{x}\left(3^{1 / 2} / 2\right)$	0	0
$+1 / 2$	$g_{x} \beta H_{x}\left(3^{1 / 2} / 2\right)$	$(1 / 4) D+g_{z} \beta H_{z} / 2$	$g_{x} \beta H_{x}$	0
$-1 / 2$	0	$g_{x} \beta H_{x}$	$(1 / 4) D-g_{z} \beta H_{z} / 2$	$g_{x} \beta H_{x}\left(3^{1 / 2} / 2\right)$
$-3 / 2$	0	0	$g_{x} \beta H_{x}\left(3^{1 / 2} / 2\right)$	$(9 / 4) D-$ $g_{z} \beta H_{z}(3 / 2)$

Eigenvalues ($E_{1,2,3,4}$, ascending value):

For $H_{x, z}=0: 0(2), 2 D(2)\{$ ground state $/ 0\}$.
For $H_{x}=0$: $(9 / 4) D \pm(3 / 2) g_{z} \beta H_{z},(1 / 4) D \pm(1 / 2) g_{z} \beta H_{z}$; assuming $D>0$ and $D>g_{z} \beta H_{z}$,
$E_{1 z}=(1 / 4) D-(1 / 2) g_{z} \beta H_{z}$,
$E_{2 z}=(1 / 4) D+(1 / 2) g_{z} \beta H_{z}$,
$E_{3 z}=(9 / 4) D-(3 / 2) g_{z} \beta H_{z}$,
$E_{4 z}=(9 / 4) D+(3 / 2) g_{z} \beta H_{z}$,
thus,
$g_{z}=\left(E_{2 z}-E_{1 z}\right) /\left(\beta H_{z}\right)$ and
$g_{z}=\left(E_{4 z}-E_{3 z}\right) /\left(3 \beta H_{x}\right)$ and
$D=2\left(E_{2 z}+E_{1 z}\right)$ and
$D=(2 / 9)\left(E_{4 z}+E_{3 z}\right)$.
For $H_{z}=0:(1 / 4)\left[5 D \pm 2 g_{x} \beta H_{x} \pm 4\left\{D^{2} \mathrm{~K} D g_{x} \beta H_{x}+\left(g_{x} \beta H_{x}\right)^{2}\right\}^{1 / 2}\right]$; assuming $D>0$ and $D>g_{x} \beta H_{x}$,
$E_{1 x}=(1 / 4)\left[5 D-2 g_{x} \beta H_{x}-4\left\{D^{2}+D g_{x} \beta H_{x}+\left(g_{x} \beta H_{x}\right)^{2}\right\}^{1 / 2}\right]$,
$E_{2 x}=(1 / 4)\left[5 D+2 g_{x} \beta H_{x}-4\left\{D^{2}-D g_{x} \beta H_{x}+\left(g_{x} \beta H_{x}\right)^{2}\right\}^{1 / 2}\right]$,
$E_{3 x}=(1 / 4)\left[5 D-2 g_{x} \beta H_{x}+4\left\{D^{2}+D g_{x} \beta H_{x}+\left(g_{x} \beta H_{x}\right)^{2}\right\}^{1 / 2}\right]$,
$E_{4 x}=(1 / 4)\left[5 D+2 g_{x} \beta H_{x}+4\left\{D^{2}-D g_{x} \beta H_{x}+\left(g_{x} \beta H_{x}\right)^{2}\right\}^{1 / 2}\right]$,
thus,
$g_{x}=\left[\left(E_{4 x}+E_{2 x}\right)-(5 / 2) D\right] /\left(\beta H_{x}\right)$ and
$g_{x}=-\left[\left(E_{3 x}+E_{I x}\right)-(5 / 2) D\right] /\left(\beta H_{x}\right)$.
$S=\mathbf{2}$

$S=2$	+2	+1	0	-1	-2
+2	$4 D+$ $2 g_{z} \beta H_{z}$	$g_{x} \beta H_{x}$	0	0	0
+1	$g_{x} \beta H_{x}$	$D+g_{z} \beta H_{z}$	$g_{x} \beta H_{x}(3 / 2)^{1 / 2}$	0	0
0	0	$g_{x} \beta H_{x}(3 / 2)^{1 / 2}$	0	$g_{x} \beta H_{x}(3 / 2)^{1 / 2}$	0
-1	0	0	$g_{x} \beta H_{x}(3 / 2)^{1 / 2}$	$D-g_{z} \beta H_{z}$	$g_{x} \beta H_{x}$
-2	0	0	0	$g_{x} \beta H_{x}$	$4 D-$ $2 g_{z} \beta H_{z}$

Eigenvalues ($E_{1,2,3,4,5}$, ascending value):
For $H_{x, z}=0: 0, D(2), 4 D(2)$.
For $H_{x}=0: 0, D \pm g_{z} \beta H_{z}, 4 D \pm 2 g_{z} \beta H_{z} / 2$; assuming $|D|>g_{z} \beta H_{z}$ and $D>0$, $E_{1 z}=0$,
$E_{2 z}=D-g_{z} \beta H_{z}$,
$E_{3 z}=D+g_{z} \beta H_{z}$,
$E_{4 z}=4 D-2 g_{z} \beta H_{z}$,
$E_{5 z}=4 D+2 g_{z} \beta H_{z}$.
thus,
$g_{z}=\left(E_{3 z}-E_{2 z}\right) /\left(2 \beta H_{z}\right)$ and $g_{z}=\left(E_{5 z}-E_{4 z}\right) /\left(4 \beta H_{z}\right)$ and
$D=\left(E_{3 z}+E_{2 z}\right) / 2$ and $D=\left(E_{5 z}+E_{4 z}\right) / 8$.
(For $D<0$, the eigenvalue order is reversed so $E_{1 z} \rightarrow E_{5_{z}}$, etc., so
$g_{z}=\left(E_{3 z}-E_{4 z}\right) /\left(2 \beta H_{z}\right)$ and $g_{z}=\left(E_{1 z}-E_{2 z}\right) /\left(4 \beta H_{z}\right)$ and $D=\left(E_{3 z}+E_{4 z}\right) / 2$ and $\left.D=\left(E_{1 z}+E_{2 z}\right) / 8\right)$.

For $H_{z}=0:(1 / 2)\left[5 D \pm\left\{(3 D)^{2}+\left(2 g_{x} \beta H_{x}\right)^{2}\right\}^{1 / 2}\right]$, plus the three roots of a cubic equation; assuming $|D|>g_{x} \beta H_{x}$,
$E_{1 x}=(1 / 3)\left[5 D-\left\{\left(1+3^{1 / 2} i\right) \mathrm{A}+\left(1-3^{1 / 2} i\right) \mathrm{B}^{2}\right\} /(2 \mathrm{~B})\right] \rightarrow 0(-\varepsilon)$ as $H_{x} \rightarrow 0$,
(root \#4)
$E_{2 x}=(1 / 2)\left[5 D-\left\{(3 D)^{2}+\left(2 g_{x} \beta H_{x}\right)^{2}\right\}^{1 / 2}\right] \rightarrow D(-\varepsilon)$ as $H_{x} \rightarrow 0$,
$E_{3 x}=(1 / 3)\left[5 D-\left\{\left(1-3^{1 / 2} i\right) \mathrm{A}+\left(1+3^{1 / 2} i\right) \mathrm{B}^{2}\right\} /(2 \mathrm{~B})\right] \rightarrow D(+\varepsilon)$ as $H_{x} \rightarrow 0$,
$E_{4 x}=(1 / 2)\left[5 D+\left\{(3 D)^{2}+\left(2 g_{x} \beta H_{x}\right)^{2}\right\}^{1 / 2}\right] \rightarrow 4 D(+\varepsilon)$ as $H_{x} \rightarrow 0$,
$E_{5 x}=(1 / 3)\left[5 D+\left\{\mathrm{A}+\mathrm{B}^{2}\right\} / \mathrm{B}\right] \rightarrow 4 D(+\varepsilon)$ as $H_{x} \rightarrow 0\left(E_{4 x} . E_{5 x}\right) ;$

Spin Hamiltonian Matrices

where,

$$
\begin{aligned}
& \mathrm{A}=13 D^{2}+12\left(g_{x} \beta H_{x}\right)^{2} \\
& \mathrm{~B}=\left[35 D^{3}-72 D\left(g_{x} \beta H_{x}\right)^{2}+63^{1 / 2} i\left\{9 D^{6}-103 D^{4}\left(g_{x} \beta H_{x}\right)^{2}+4 D^{2}\left(g_{x} \beta H_{x}\right)^{4}+16\left(g_{x} \beta H_{x}\right)^{6}\right\}^{1 / 2}\right]^{1 / 3}
\end{aligned}
$$

thus for both $D>0$ and $D<0$, $g_{x}=\left[\left(E_{4 x}-E_{2 x}\right)^{2}-(3 D)^{2}\right]^{1 / 2} /\left(2 \beta H_{x}\right)$.
$S=5 / 2$

$S=5 / 2$	$+5 / 2$	$+3 / 2$	$+1 / 2$	$-1 / 2$	$-3 / 2$	$-5 / 2$
$+5 / 2$	$(25 / 4) D+$ $g_{z} \beta H_{z}(5 / 2)$	$g_{x} \beta H_{x}$ $\left(5^{1 / 2} / 2\right)$	0	0	0	0
$+3 / 2$	$g_{x} \beta H_{x}$ $\left(5^{1 / 2} / 2\right)$	$(9 / 4) D+$ $g_{z} \beta H_{z}(3 / 2)$	$g_{x} \beta H_{x}\left(2^{1 / 2}\right)$	0	0	0
$+1 / 2$	0	$g_{x} \beta H_{x}\left(2^{1 / 2}\right)$	$(1 / 4) D+$ $g_{z} \beta H_{z} / 2$	$g_{x} \beta H_{x}(3 / 2)$	0	0
$-1 / 2$	0	0	$g_{x} \beta H_{x}(3 / 2)$	$(1 / 4) D-$ $g_{z} \beta H_{z} / 2$	$g_{x} \beta H_{x}\left(2^{1 / 2}\right)$	0
$-3 / 2$	0	0	0	$g_{x} \beta H_{x}\left(2^{1 / 2}\right)$	$(9 / 4) D-$ $g_{z} \beta H_{z}(3 / 2)$	$g_{x} \beta H_{x}$ $\left(5^{1 / 2} / 2\right)$
$-5 / 2$	0	0	0	0	$g_{x} \beta H_{x}$ $\left(5^{1 / 2} / 2\right)$	$(25 / 4) D-$ $g_{z} \beta H_{z}(5 / 2)$

Eigenvalues ($E_{1,2,3,4,5,6}$, ascending value):
For $H_{x, z}=0: 0(2), 2 D(2), 6 D(2)\{$ ground state $/ 0\}$.
For $H_{x}=0:(25 / 4) D \pm g_{z} \beta H_{z}(5 / 2),(9 / 4) D \pm g_{z} \beta H_{z}(3 / 2),(1 / 4) D \pm g_{z} \beta H_{z} / 2$, assuming $D>0$ and $D>g_{z} \beta H_{z}$,
$E_{1 z}=(1 / 4) D-(1 / 2) g_{z} \beta H_{z}$,
$E_{2 z}=(1 / 4) D+(1 / 2) g_{z} \beta H_{z}$,
$E_{3 z}=(9 / 4) D-(3 / 2) g_{z} \beta H_{z}$,
$E_{4 z}=(9 / 4) D+(3 / 2) g_{z} \beta H_{z}$,
$E_{5 z}=(25 / 4) D-(5 / 2) g_{z} \beta H_{z}$,
$E_{6 z}=(25 / 4) D+(5 / 2) g_{z} \beta H_{z}$,
thus,
$g_{z}=\left(E_{2 z}-E_{1 z}\right) /\left(\beta H_{z}\right), g_{z}=\left(E_{4 z}-E_{3 z}\right) /\left(3 \beta H_{x}\right)$, and $g_{z}=\left(E_{6 z}-E_{5 z}\right) /\left(5 \beta H_{x}\right)$;
and $D=2\left(E_{2 z}+E_{1 z}\right), D=(2 / 9)\left(E_{4 z}+E_{3 z}\right)$, and $D=(2 / 25)\left(E_{6 z}+E_{5 z}\right)$.

For $H_{z}=0$:
$E_{1 x}=(1 / 12)\left[35 D-6 g_{z} \beta H_{z}-\left\{4\left(1+3^{1 / 2} i\right) \mathrm{A}+4\left(1-3^{1 / 2} i\right) \mathrm{C}^{2}\right\} / \mathrm{C}\right] \rightarrow(1 / 4) D(-\varepsilon)$ as $H_{x} \rightarrow 0,($ root \#5)
$E_{2 x}=(1 / 12)\left[35 D+6 g_{z} \beta H_{z}-\left\{4\left(1+3^{1 / 2} i\right) \mathrm{B}+4\left(1-3^{1 / 2} i\right) \mathrm{D}^{2}\right\} / \mathrm{D}\right] \rightarrow(1 / 4) D(+\varepsilon)$ as $H_{x} \rightarrow 0,($ root \#2)
$E_{3 x}=(1 / 12)\left[35 D-6 g_{z} \beta H_{z}-\left\{4\left(1-3^{1 / 2} i\right) \mathrm{A}+4\left(1+3^{1 / 2} i\right) \mathrm{C}^{2}\right\} / \mathrm{C}\right] \rightarrow(9 / 4) D(+\varepsilon)$ as $H_{x} \rightarrow 0,($ root \#6)
$E_{4 x}=(1 / 12)\left[35 D+6 g_{z} \beta H_{z}-\left\{4\left(1-3^{1 / 2} i\right) \mathrm{B}+4\left(1+3^{1 / 2} i\right) \mathrm{D}^{2}\right\} / \mathrm{D}\right] \rightarrow(9 / 4) D(+\varepsilon)$ as $H_{x} \rightarrow 0,($ root \#3)
$E_{5 x}=(1 / 12)\left[35 D-6 g_{z} \beta H_{z}+\left\{8 \mathrm{~A}+8 \mathrm{C}^{2}\right\} / \mathrm{C}\right] \rightarrow(25 / 4) D(+\varepsilon)$ as $H_{x} \rightarrow 0, \quad$ (root \#4)
$E_{6 x}=(1 / 12)\left[35 D+6 g_{z} \beta H_{z}+\left\{8 \mathrm{~B}+8 \mathrm{D}^{2}\right\} / \mathrm{D}\right] \rightarrow(25 / 4) D(+\varepsilon)$ as $H_{x} \rightarrow 0,\left(E_{5 x}=E_{6 x}\right) ; \quad($ root \#1)
where,
$\mathrm{A}=2^{2 / 3}\left\{7 D^{2}+3 D\left(g_{x} \beta H_{x}\right)^{2}+3\left(g_{x} \beta H_{x}\right)^{2}\right\}$
$\mathrm{B}=2^{2 / 3}\left\{7 D^{2}-3 D\left(g_{x} \beta H_{x}\right)^{2}+3\left(g_{x} \beta H_{x}\right)^{2}\right\}$
$\mathrm{C}=\left[40 D^{3}-9 D^{2}\left(g_{x} \beta H_{x}\right)-36 D\left(g_{x} \beta H_{x}\right)^{2}+\right.$
$33^{1 / 2} i\left\{144 D^{6}+288 D^{5}\left(g_{x} \beta H_{x}\right)+477 D^{4}\left(g_{x} \beta H_{x}\right)^{2}+216 D^{3}\left(g_{x} \beta H_{x}\right)^{3}+112 D^{2}\left(g_{x} \beta H_{x}\right)^{4}\right.$
$\left.\left.+48 D\left(g_{x} \beta H_{x}\right)^{5}+16\left(g_{x} \beta H_{x}\right)^{6}\right\}^{1 / 2}\right]^{1 / 3}$
$\mathrm{D}=\left[40 D^{3}+9 D^{2}\left(g_{x} \beta H_{x}\right)-36 D\left(g_{x} \beta H_{x}\right)^{2}+\right.$
$33^{1 / 2} i\left\{144 D^{6}-288 D^{5}\left(g_{x} \beta H_{x}\right)+477 D^{4}\left(g_{x} \beta H_{x}\right)^{2}-216 D^{3}\left(g_{x} \beta H_{x}\right)^{3}+112 D^{2}\left(g_{x} \beta H_{x}\right)^{4}\right.$ $\left.\left.-48 D\left(g_{x} \beta H_{x}\right)^{5}+16\left(g_{x} \beta H_{x}\right)^{6}\right\}^{1 / 2}\right]^{1 / 3}$
thus,
$g_{x}=-\left[2\left(E_{1 x}+E_{3 x}+E_{5 x}\right)-(35 / 2) D\right] /\left(3 \beta H_{x}\right)$ and
$g_{x}=\left[2\left(E_{2 x}+E_{4 x}+E_{6 x}\right)-(35 / 2) D\right] /\left(3 \beta H_{x}\right)$.

Spin Hamiltonian Matrices

Rhombic Systems

diagonal: $B_{2}{ }^{0} O_{2}{ }^{0}+g_{z} \beta H 今 \boldsymbol{S}_{z}$, where $D / 3=B_{2}{ }^{0}$;
off-diagonal: $g_{x} \beta H \cong \boldsymbol{S}_{x}+g_{y} \beta H \leftrightharpoons \boldsymbol{S}_{y}=g_{x} \beta H_{x}(1 / 2)\left(\boldsymbol{S}_{+}+\boldsymbol{S}_{-}\right)+g_{y} \beta H_{y}(-i / 2)\left(\boldsymbol{S}_{+}-\boldsymbol{S}\right)$;
off-off-diagonal: $B_{2}{ }^{2} O_{2}{ }^{2}$, where $E=B_{2}{ }^{2}$.
$S=1$

$S=1$	+1	0	-1
+1	$(1 / 3) D+g_{z} \beta H_{z}$	$\left(1 / 2^{1 / 2}\right)\left[g_{x} \beta H_{x}-i g_{y} \beta H_{y}\right]$	E
0	$\left(1 / 2^{1 / 2}\right)\left[g_{x} \beta H_{x}+i g_{y} \beta H_{y}\right]$	$(-2 / 3) D$	$\left(1 / 2^{1 / 2}\right)\left[g_{x} \beta H_{x}-i g_{y} \beta H_{y}\right]$
-1	E	$\left(1 / 2^{1 / 2}\right)\left[g_{x} \beta H_{x}+i g_{y} \beta H_{y}\right]$	$(1 / 3) D-g_{z} \beta H_{z}$

Eigenvalues ($E_{1,2,3}$, ascending value), assuming $D, E>0$:
For $H_{x, y, z}=0$:
$E_{I}=(-2 / 3) D$,
$E_{2}=D / 3-E$,
$E_{3}=D / 3+E$.
Thus,
$D=\left\{\left(E_{3}+E_{2}\right) / 2-E_{1}\right\}$, and $E=\left(E_{3}-E_{2}\right) / 2$.
For $H_{x, y}=0\left(H_{z} \neq 0\right)$:
$E_{1 z}=(-2 / 3) D$,
$E_{2 z}=D / 3-\left\{E^{2}+\left(g_{z} \beta H_{z}\right)^{2}\right\}^{1 / 2}$,
$E_{3 z}=D / 3+\left\{E^{2}+\left(g_{z} \beta H_{z}\right)^{2}\right\}^{1 / 2}$.
Thus,
$g_{z}=\left\{\left(E_{3 z}-E_{2 z}\right)^{2}-(2 E)^{2}\right\}^{1 / 2} /\left(2 \beta H_{z}\right)$.
For $H_{y, z}=0\left(H_{x} \neq 0\right)$:
$E_{1 x}=(1 / 2)\left[-D / 3+E-\left\{(D+E)^{2}+\left(2 g_{x} \beta H_{x}\right)^{2}\right\}^{1 / 2}\right] \rightarrow(-2 / 3) D(-\varepsilon)$ as $E, H_{x} \rightarrow 0$;
(root \#2)
$E_{2 x}=\{D / 3-E\} \rightarrow D / 3$ as $E \rightarrow 0$;
(root \#1)
$E_{3 x}=(1 / 2)\left[-D / 3+E+\left\{(D+E)^{2}+\left(2 g_{x} \beta H_{x}\right)^{2}\right\}^{1 / 2}\right] \rightarrow D / 3(+\varepsilon)$ as $E, H_{x} \rightarrow 0$.
(root \#3)
Thus,
$g_{x}=\left\{\left(E_{3 x}-E_{1 x}\right)^{2}-(D+E)^{2}\right\}^{1 / 2} /\left(2 \beta H_{x}\right)$.

For $H_{x, z}=0\left(H_{y} \neq 0\right)$:
$E_{l y}=(1 / 2)\left[-D / 3+E-\left\{(D-E)^{2}+\left(2 g_{y} \beta H_{y}\right)^{2}\right\}^{1 / 2}\right] \rightarrow(-2 / 3) D(-\varepsilon)$ as $E, H_{y} \rightarrow 0$;
(root \#2)
$E_{2 y}=\{D / 3-E\} \rightarrow D / 3$ as $E \rightarrow 0$;
$E_{3 y}=(1 / 2)\left[-D / 3+E+\left\{(D-E)^{2}+\left(2 g_{y} \beta H_{y}\right)^{2}\right\}^{1 / 2}\right] \rightarrow D / 3(+\varepsilon)$ as $E, H_{y} \rightarrow 0$.
Thus,
$g_{y}=\left\{\left(E_{3 y}-E_{l y}\right)^{2}-(D-E)^{2}\right\}^{1 / 2} /\left(2 \beta H_{y}\right)$.
$S=3 / 2$

$S=3 / 2$	$+3 / 2$	$+1 / 2$	$-1 / 2$	$-3 / 2$
$+3 / 2$	$D+(3 / 2) g_{z} \beta H_{z}$	$\left(3^{1 / 2} / 2\right)$ $\left[g_{x} \beta H_{x}-i g_{y} \beta H_{y}\right]$	$3^{1 / 2} E$	0
$+1 / 2$	$\left(3^{1 / 2} / 2\right)$ $\left[g_{x} \beta H_{x}+i g_{y} \beta H_{y}\right]$	$-D+(1 / 2) g_{z} \beta H_{z}$	$g_{x} \beta H_{x}-i g_{y} \beta H_{y}$	$3^{1 / 2} E$
$-1 / 2$	$3^{1 / 2} E$	$g_{x} \beta H_{x}+i g_{y} \beta H_{y}$	$-D-(1 / 2) g_{z} \beta H_{z}$	$\left(3^{1 / 2} / 2\right)$ $\left[g_{x} \beta H_{x}-i g_{y} \beta H_{y}\right]$
$-3 / 2$	0	$3^{1 / 2} E$	$\left(3^{1 / 2} / 2\right)$ $\left[g_{x} \beta H_{x}+i g_{y} \beta H_{y}\right]$	$D-(3 / 2) g_{z} \beta H_{z}$

Eigenvalues ($E_{1,2,3,4}$, ascending value):
For $H_{x, y, z}=0$:
$E_{1,2}=-\left\{D^{2}+3 E^{2}\right\}^{1 / 2}$,
$E_{3,4}=\left\{D^{2}+3 E^{2}\right\}^{1 / 2}$.

For $H_{x, y}=0\left(H_{z} \neq 0\right)$, assuming $D>0$ and $D>g_{z} \beta H_{z}$:
$E_{1 z}=(1 / 2) g_{z} \beta H_{z}-\left\{\left(D+g_{z} \beta H_{z}\right)^{2}+3 E^{2}\right\}^{1 / 2} \rightarrow\left\{-D-(1 / 2) g_{z} \beta H_{z}\right\}$ as $E \rightarrow 0$;
$E_{2 z}=-(1 / 2) g_{z} \beta H_{z}-\left\{\left(D-g_{z} \beta H_{z}\right)^{2}+3 E^{2}\right\}^{1 / 2} \rightarrow\left\{-D+(1 / 2) g_{z} \beta H_{z}\right\}$ as $E \rightarrow 0$;
(root \#3)
$E_{3 z}=-(1 / 2) g_{z} \beta H_{z}+\left\{\left(D-g_{z} \beta H_{z}\right)^{2}+3 E^{2}\right\}^{1 / 2} \rightarrow\left\{D-(3 / 2) g_{z} \beta H_{z}\right\}$ as $E \rightarrow 0$;
$E_{4 z}=(1 / 2) g_{z} \beta H_{z}+\left\{\left(D+g_{z} \beta H_{z}\right)^{2}+3 E^{2}\right\}^{1 / 2} \rightarrow\left\{D+(3 / 2) g_{z} \beta H_{z}\right\}$ as $E \rightarrow 0 ;$
(root \#4)
Thus,
$g_{z}=-\left(E_{2 z}+E_{3 z}\right) /\left(\beta H_{z}\right)$ and $g_{z}=\left(E_{1 z}+E_{4 z}\right) /\left(\beta H_{z}\right)$.
For $H_{y, z}=0\left(H_{x} \neq 0\right)$, assuming $D>0$ and $D>g_{x} \beta H_{x}$:
$E_{1 x}=-(1 / 2) g_{x} \beta H_{x}-\left\{D^{2}+\left(g_{x} \beta H_{x}\right)^{2}+3 E^{2}+D\left(g_{x} \beta H_{x}\right)-3 E\left(g_{x} \beta H_{x}\right)\right\}^{1 / 2} \rightarrow-D$ as $H_{x}, E \rightarrow 0$; (root \#1)
$E_{2 x}=(1 / 2) g_{x} \beta H_{x}-\left\{D^{2}+\left(g_{x} \beta H_{x}\right)^{2}+3 E^{2}-D\left(g_{x} \beta H_{x}\right)+3 E\left(g_{x} \beta H_{x}\right)\right\}^{1 / 2} \rightarrow-D$ as $H_{x}, E \rightarrow 0$; (root \#3)
$E_{3 x}=-(1 / 2) g_{x} \beta H_{x}+\left\{D^{2}+\left(g_{x} \beta H_{x}\right)^{2}+3 E^{2}+D\left(g_{x} \beta H_{x}\right)-3 E\left(g_{x} \beta H_{x}\right)\right\}^{1 / 2} \rightarrow D$ as $H_{x}, E \rightarrow 0$; (root \#2)
$E_{4 x}=(1 / 2) g_{x} \beta H_{x}+\left\{D^{2}+\left(g_{x} \beta H_{x}\right)^{2}+3 E^{2}-D\left(g_{x} \beta H_{x}\right)+3 E\left(g_{x} \beta H_{x}\right)\right\}^{1 / 2} \rightarrow D$ as $H_{x}, E \rightarrow 0$; (root \#4)
Thus,
$g_{x}=-\left(E_{1 x}+E_{3 x}\right) /\left(\beta H_{x}\right)$ and $g_{x}=\left(E_{2 x}+E_{4 x}\right) /\left(\beta H_{x}\right)$.

For $H_{x, z}=0\left(H_{y} \neq 0\right)$, assuming $D>0$ and $D>g_{y} \beta H_{y}$:
$E_{l y}=-(1 / 2) g_{y} \beta H_{y}-\left\{D^{2}+\left(g_{y} \beta H_{y}\right)^{2}+3 E^{2}+D\left(g_{y} \beta H_{y}\right)+3 E\left(g_{y} \beta H_{y}\right)\right\}^{1 / 2} \rightarrow-D$ as $H_{y}, E \rightarrow 0$; (root \#3) $E_{2 y}=(1 / 2) g_{y} \beta H_{y}-\left\{D^{2}+\left(g_{y} \beta H_{y}\right)^{2}+3 E^{2}-D\left(g_{y} \beta H_{y}\right)-3 E\left(g_{y} \beta H_{y}\right)\right\}^{1 / 2} \rightarrow-D$ as $H_{y}, E \rightarrow 0$; (root \#1)
$E_{3 y}=-(1 / 2) g_{y} \beta H_{y}+\left\{D^{2}+\left(g_{y} \beta H_{y}\right)^{2}+3 E^{2}+D\left(g_{y} \beta H_{y}\right)+3 E\left(g_{y} \beta H_{y}\right)\right\}^{1 / 2} \rightarrow D$ as $H_{y}, E \rightarrow 0$; (root \#4)
$E_{4 y}=(1 / 2) g_{y} \beta H_{y}+\left\{D^{2}+\left(g_{y} \beta H_{y}\right)^{2}+3 E^{2}-D\left(g_{y} \beta H_{y}\right)-3 E\left(g_{y} \beta H_{y}\right)\right\}^{1 / 2} \rightarrow D$ as $H_{y}, E \rightarrow 0 ;($ root \#2 $)$
Thus,
$g_{y}=-\left(E_{1 y}+E_{3 y}\right) /\left(\beta H_{y}\right)$ and $g_{y}=\left(E_{2 y}+E_{4 y}\right) /\left(\beta H_{y}\right)$.
$S=2$

$S=2$	+2	+1	0	-1	-2
+2	$2 D+2 g_{z} \beta H_{z}$	$g_{x} \beta H_{x}$ $-i g_{y} \beta H_{y}$	$6^{1 / 2} E$	0	0
+1	$g_{x} \beta H_{x}$ $+i g_{y} \beta H_{y}$	$-D+g_{z} \beta H_{z}$	$(3 / 2)^{1 / 2}$ $\left[g_{x} \beta H_{x}\right.$ $\left.-i g_{y} \beta H_{y}\right]$	$3 E$	0
0	$6^{1 / 2} E$	$(3 / 2)^{1 / 2}$ $\left[g_{x} \beta H_{x}\right.$ $\left.+i g_{y} \beta H_{y}\right]$	$-2 D$	$(3 / 2)^{1 / 2}$ $\left[g_{x} \beta H_{x}\right.$ $\left.-i g_{y} \beta H_{y}\right]$	$6^{1 / 2} E$
-1	0	$3 E$	$(3 / 2)^{1 / 2}$ $\left[g_{x} \beta H_{x}\right.$ $\left.+i g_{y} \beta H_{y}\right]$	$-D-g_{z} \beta H_{z}$	$g_{x} \beta H_{x}$
$-i g_{y} \beta H_{y}$					

Eigenvalues ($E_{1,2,3,4,5}$, ascending value):
For $H_{x, y, z}=0$, assuming $D, E>0$:
$E_{1}=-2\left(D^{2}+3 E^{2}\right)^{1 / 2}$
$E_{2}=-D-3 E$
$E_{3}=-D+3 E$
$E_{4}=2 D$
$E_{5}=2\left(D^{2}+3 E^{2}\right)^{1 / 2}$
(root \#4)

Thus,
$D=\left\{E_{4}-\left(E_{3}+E_{2}\right)\right\} / 4$, and $E=\left(E_{3}-E_{2}\right) / 6$.
For $H_{x, y}=0\left(H_{z} \neq 0\right)$, assuming $D>0$ and $D>g_{z} \beta H_{z}$:
$E_{1 z}=(1 / 3)\left[2 D-\left\{\left(1+3^{1 / 2} i\right) \mathrm{A}+\left(1-3^{1 / 2} i\right) \mathrm{B}^{2}\right\} / \mathrm{B}\right] \rightarrow-2 D$ as $H_{z}, E \rightarrow 0$,
$E_{2 z}=-D-\left\{(3 E)^{2}+\left(g_{z} \beta H_{z}\right)^{2}\right\}^{1 / 2} \rightarrow-D(-\varepsilon)$ as $H_{z}, E \rightarrow 0$,
$E_{3 z}=-D+\left\{(3 E)^{2}+\left(g_{z} \beta H_{z}\right)^{2}\right\}^{1 / 2} \rightarrow-D(+\varepsilon)$ as $H_{z}, E \rightarrow 0$,
(root \#2)
(root \#3)
(root \#1)
(root \#5)
$E_{4 z}=(1 / 3)\left[2 D-\left\{\left(1-3^{1 / 2} i\right) \mathrm{A}+\left(1+3^{1 / 2} i\right) \mathrm{B}^{2}\right\} / \mathrm{B}\right] \rightarrow 2 D$ as $H_{z}, E \rightarrow 0$,
$E_{5 z}=(2 / 3)\left[D+\left\{\mathrm{A}+\mathrm{B}^{2}\right\} / \mathrm{B}\right] \rightarrow 2 D$ as $H_{z}, E \rightarrow 0$,
(root \#4)
(root \#1)
(root \#2)
(root \#5)
(root \#3)
where,
$\mathrm{A}=\left[(2 D)^{2}+(3 E)^{2}+3\left(g_{z} \beta H_{z}\right)^{2}\right]$,
$\mathrm{B}=\left[-8 D^{3}-27 D E^{2}+18 D\left(g_{z} \beta H_{z}\right)^{2}+\left\{-\mathrm{A}^{3}+\left[8 D^{3}+27 D E^{2}-18 D\left(g_{z} \beta H_{z}\right)^{2}\right]^{2}\right\}^{1 / 2}\right]^{1 / 3}$
Thus,
$g_{z}=\left\{\left(E_{3 z}-E_{2 z}\right)^{2}-(6 E)^{2}\right\}^{1 / 2} /\left(2 \beta H_{z}\right)$.

For $H_{y, z}=0\left(H_{x} \neq 0\right)$, assuming $D>0$ and $D>g_{x} \beta H_{x}$:
$E_{l x}=(1 / 3)\left[-D+3 E-(1 / 2)\left\{\left(1+3^{1 / 2} i\right) \mathrm{A}+\left(1-3^{1 / 2} i\right) \mathrm{B}^{2}\right\} / \mathrm{B}\right] \rightarrow-2 D$ as $H_{x}, E \rightarrow 0$, $E_{2 x}=(1 / 2)\left[D-3 E-\left\{9(D+E)^{2}+\left(2 g_{x} \beta H_{x}\right)^{2}\right\}^{1 / 2}\right] \rightarrow-D(-\varepsilon)$ as $H_{x}, E \rightarrow 0$, $E_{3 x}=(1 / 3)\left[-D+3 E-(1 / 2)\left\{\left(1-3^{1 / 2} i\right) \mathrm{A}+\left(1+3^{1 / 2} i\right) \mathrm{B}^{2}\right\} / \mathrm{B}\right] \rightarrow-D(+\varepsilon)$ as $H_{x}, E \rightarrow 0$, $E_{4 x}=(1 / 2)\left[D-3 E+\left\{9(D+E)^{2}+\left(2 g_{x} \beta H_{x}\right)^{2}\right\}^{1 / 2}\right] \rightarrow 2 D$ as $H_{x}, E \rightarrow 0$, $E_{5 x}=(1 / 3)\left[-D+3 E+\left\{\mathrm{A}+\mathrm{B}^{2}\right\} / \mathrm{B}\right] \rightarrow 2 D$ as $H_{x}, E \rightarrow 0$, where,

$$
\begin{aligned}
& \mathrm{A}=13 D^{2}-6 D E^{2}+45 E^{2}+12\left(g_{x} \beta H_{x}\right)^{2}, \\
& \mathrm{~B}=\left[35 D^{3}-99 D^{2} E+81 D E^{2}-297 E^{3}-72 D\left(g_{x} \beta H_{x}\right)^{2}+216 E\left(g_{x} \beta H_{x}\right)^{2}+\right.
\end{aligned}
$$

$$
(1 / 2)\left\{4\left(D^{2}-3 E\right)^{2}\left[\left(35 D^{2}+6 D E^{2}+99 E^{2}-72\left(g_{x} \beta H_{x}\right)^{2}\right]^{2}-4 \mathrm{~A}^{3}\right\}^{1 / 2}\right]^{1 / 3}
$$

Thus,
$g_{x}=\left\{\left(E_{4 x}-E_{2 x}\right)^{2}-9(D+E)^{2}\right\}^{1 / 2} /\left(2 \beta H_{x}\right)$.
For $H_{x, z}=0\left(H_{y} \neq 0\right)$, assuming $D>0$ and $D>g_{y} \beta H_{y}$:
$E_{1 y}=(1 / 3)\left[-D+3 E-(1 / 2)\left\{\left(1+3^{1 / 2} i\right) \mathrm{A}+\left(1-3^{1 / 2} i\right) \mathrm{B}^{2}\right\} / \mathrm{B}\right] \rightarrow-2 D$ as $H_{y}, E \rightarrow 0$,
(root \#4)
$E_{2 y}=(1 / 2)\left[D+3 E-\left\{9(D-E)^{2}+\left(2 g_{y} \beta H_{y}\right)^{2}\right\}^{1 / 2}\right] \rightarrow-D(-\varepsilon)$ as $H_{y}, E \rightarrow 0$, $E_{3 y}=(1 / 3)\left[-D+3 E-(1 / 2)\left\{\left(1-3^{1 / 2} i\right) \mathrm{A}+\left(1+3^{1 / 2} i\right) \mathrm{B}^{2}\right\} / \mathrm{B}\right] \rightarrow-D(+\varepsilon)$ as $H_{y}, E \rightarrow 0$, $E_{4 y}=(1 / 2)\left[D+3 E+\left\{9(D-E)^{2}+\left(2 g_{y} \beta H_{y}\right)^{2}\right\}^{1 / 2}\right] \rightarrow 2 D$ as $H_{y}, E \rightarrow 0$, (root \#1) (root \#5)
$E_{5 y}=(1 / 3)\left[-D+3 E+\left\{\mathrm{A}+\mathrm{B}^{2}\right\} / \mathrm{B}\right] \rightarrow 2 D$ as $H_{y}, E \rightarrow 0$,
(root \#2)
where,

$$
\begin{aligned}
& \mathrm{A}=13 D^{2}+6 D E^{2}+45 E^{2}+12\left(g_{y} \beta H_{y}\right)^{2}, \\
& \mathrm{~B}=\left[35 D^{3}+99 D^{2} E+81 D E^{2}+297 E^{3}-72 D\left(g_{y} \beta H_{y}\right)^{2}-216 E\left(g_{y} \beta H_{y}\right)^{2}+\right. \\
& \quad(1 / 2)\left\{4\left(D^{2}+3 E\right)^{2}\left[\left(35 D^{2}-6 D E^{2}+99 E^{2}-72\left(g_{y} \beta H_{y}\right)^{2}\right]^{2}-4 \mathrm{~A}^{3}\right\}^{1 / 2}\right]^{1 / 3} .
\end{aligned}
$$

Thus,
$g_{y}=\left\{\left(E_{4 y}-E_{2 y}\right)^{2}-9(D-E)^{2}\right\}^{1 / 2} /\left(2 \beta H_{y}\right)$.
$S=5 / 2$

$S=5 / 2$	$+5 / 2$	$+3 / 2$	$+1 / 2$	$-1 / 2$	$-3 / 2$	$-5 / 2$
$+5 / 2$	$(10 / 3) D+$ $g_{z} \beta H_{z}(5 / 2)$	$g_{x y} \beta H_{x}$ $\left(5^{1 / 2} / 2\right)$	$10^{1 / 2} E$	0	0	0
$+3 / 2$	$g_{x y} \beta H_{x}$ $\left(5^{1 / 2} / 2\right)$	$-(2 / 3) D+$ $g_{z} \beta H_{z}(3 / 2)$	$g_{x y} \beta H_{x}\left(2^{1 / 2}\right)$	$32^{1 / 2} E$	0	0
$+1 / 2$	$10^{1 / 2} E$	$g_{x y} \beta H_{x}\left(2^{1 / 2}\right)$	$-(8 / 3) D+$ $g_{z} \beta H_{z} / 2$	$g_{x y} \beta H_{x}(3 / 2)$	$32^{1 / 2} E$	0
$-1 / 2$	0	$32^{1 / 2} E$	$g_{x y} \beta H_{x}(3 / 2)$	$-(8 / 3) D-$ $g_{z} \beta H_{z} / 2$	$g_{x y} \beta H_{x}\left(2^{1 / 2}\right)$	$10^{1 / 2} E$
$-3 / 2$	0	0	$32^{1 / 2} E$	$g_{x y} \beta H_{x}\left(2^{1 / 2}\right)$	$-(2 / 3) D-$ $g_{z} \beta H_{z}(3 / 2)$	$g_{x y} \beta H_{x}$ $\left(5^{1 / 2} / 2\right)$
$-5 / 2$	0	0	0	$10^{1 / 2} E$	$g_{x y} \beta H_{x}$ $\left(5^{1 / 2} / 2\right)$	$(10 / 3) D-$ $g_{z} \beta H_{z}(5 / 2)$

Use $g_{x y}, H_{x}$ so only reals; rhombicity in \boldsymbol{g} can be ignored for the present purposes.
Eigenvalues ($E_{1,2,3,4,5,6}$, ascending value):
For $H_{x, z}=0$:
$E_{1,2}=2\left\{7 D^{2}+21 E^{2}+\mathrm{A}^{2}\right\} / \mathrm{A} \rightarrow-(8 / 3) D$ as $E \rightarrow 0$,
(root \#1,2)
$\left.E_{3,4}=\left\{-7\left(1-3^{1 / 2} i\right) D^{2}-21\left(1-3^{1 / 2} i\right) E^{2}-\left(1+3^{1 / 2} i\right) \mathrm{A}^{2}\right)\right\} / \mathrm{A} \rightarrow-(2 / 3) D$ as $E \rightarrow 0, \quad($ root \#3,4)
$\left.E_{5,6}=\left\{-7\left(1+3^{1 / 2} i\right) D^{2}-21\left(1+3^{1 / 2} i\right) E^{2}-\left(1-3^{1 / 2} i\right) \mathrm{A}^{2}\right)\right\} / \mathrm{A} \rightarrow(10 / 3) D$ as $E \rightarrow 0, \quad($ root \#5,6)
where,
$\mathrm{A}=\left\{10 D^{3}-90 D E^{2}+33^{1 / 2} i\left(9 D^{6}+181 D^{4} E^{2}+43 D^{2} E^{4}+343 E^{6}\right)^{1 / 2}\right\}^{1 / 3}$.
For $H_{z}=0\left(H_{x} \neq 0\right)$:
$E_{1 x}=$ very complicated root $\rightarrow-(8 / 3) D$ as $H_{x}, E \rightarrow 0$,
$E_{2 x}=$ very complicated root $\rightarrow-(8 / 3) D$ as $H_{x}, E \rightarrow 0$,
$E_{3 x}=$ very complicated root $\rightarrow-(2 / 3) D$ as $H_{x}, E \rightarrow 0$,
$E_{4 x}=$ very complicated root $\rightarrow-(2 / 3) D$ as $H_{x}, E \rightarrow 0$,
$E_{5 x}=$ very complicated root $\rightarrow(10 / 3) D$ as $H_{x}, E \rightarrow 0$,
(root \#5)
$E_{1 x}=$ very complicated root $\rightarrow(10 / 3) D$ as $H_{x}, E \rightarrow 0$,
(root \#2)
(root \#6)
(root \#3)
(root \#4)
(root \#1)

We find that,
$g_{x y}=-(2 / 3)\left(E_{1 x}+E_{3 x}+E_{5 x}\right) /\left(\beta H_{x}\right)$ and $g_{x y}=(2 / 3)\left(E_{2 x}+E_{4 x}+E_{6 x}\right) /\left(\beta H_{x}\right)$.

For $H_{x}=0\left(H_{z} \neq 0\right)$:
$E_{1 z}=$ very complicated root $\rightarrow-(8 / 3) D$ as $H_{z}, E \rightarrow 0$,
(root \#1)
$E_{2 z}=$ very complicated root $\rightarrow-(8 / 3) D$ as $H_{z}, E \rightarrow 0$,
$E_{3 z}=$ very complicated root $\rightarrow-(2 / 3) D$ as $H_{z}, E \rightarrow 0$,
$E_{4 z}=$ very complicated root $\rightarrow-(2 / 3) D$ as $H_{z}, E \rightarrow 0$, (root \#3)
$E_{5 z}=$ very complicated root $\rightarrow(10 / 3) D$ as $H_{z}, E \rightarrow 0$, (root \#4)
$E_{1 z}=$ very complicated root $\rightarrow(10 / 3) D$ as $H_{z}, E \rightarrow 0$,
(root \#5)
(root \#6)

No easy combination for g_{z}.

